Part 1
In part 1 of this Sudoku solver with python tutorial I explain how we are going to go about solving the problem and discuss the algorithm known as backtracking. Backtracking is simply reverting back to the previous step or solution as soon as we determine that our current solution cannot be continued into a complete one. We will use this principle of backtracking to implement the following algorithm.
Algorithm
Starting with an incomplete board:
- Find some empty space
- Attempt to place the digits 1-9 in that space
- Check if that digit is valid in the current spot based on the current board
- a. If the digit is valid, recursively attempt to fill the board using steps 1-3.
b. If it is not valid, reset the square you just filled and go back to the previous step. - Once the board is full by the definition of this algorithm we have found a solution.
We will finish about half of the algorithm in part 1. In part 2 (look below) we will implement the entire algorithm.
Part 1 Code
board = [ [7,8,0,4,0,0,1,2,0], [6,0,0,0,7,5,0,0,9], [0,0,0,6,0,1,0,7,8], [0,0,7,0,4,0,2,6,0], [0,0,1,0,5,0,9,3,0], [9,0,4,0,6,0,0,0,5], [0,7,0,3,0,0,0,1,2], [1,2,0,0,0,7,4,0,0], [0,4,9,2,0,6,0,0,7] ] def print_board(bo): for i in range(len(bo)): if i % 3 == 0 and i != 0: print("- - - - - - - - - - - - - ") for j in range(len(bo[0])): if j % 3 == 0 and j != 0: print(" | ", end="") if j == 8: print(bo[i][j]) else: print(str(bo[i][j]) + " ", end="") def find_empty(bo): for i in range(len(bo)): for j in range(len(bo[0])): if bo[i][j] == 0: return (i, j) # row, col return None
Part 2
In part 2 of this tutorial we will finish the algorithm and continue to understand how it works by running through our code step by step. We will use a recursive function to implement the algorithm explained in part 1.
Part 2 Code
board = [ [7,8,0,4,0,0,1,2,0], [6,0,0,0,7,5,0,0,9], [0,0,0,6,0,1,0,7,8], [0,0,7,0,4,0,2,6,0], [0,0,1,0,5,0,9,3,0], [9,0,4,0,6,0,0,0,5], [0,7,0,3,0,0,0,1,2], [1,2,0,0,0,7,4,0,0], [0,4,9,2,0,6,0,0,7] ] def solve(bo): find = find_empty(bo) if not find: return True else: row, col = find for i in range(1,10): if valid(bo, i, (row, col)): bo[row][col] = i if solve(bo): return True bo[row][col] = 0 return False def valid(bo, num, pos): # Check row for i in range(len(bo[0])): if bo[pos[0]][i] == num and pos[1] != i: return False # Check column for i in range(len(bo)): if bo[i][pos[1]] == num and pos[0] != i: return False # Check box box_x = pos[1] // 3 box_y = pos[0] // 3 for i in range(box_y*3, box_y*3 + 3): for j in range(box_x * 3, box_x*3 + 3): if bo[i][j] == num and (i,j) != pos: return False return True def print_board(bo): for i in range(len(bo)): if i % 3 == 0 and i != 0: print("- - - - - - - - - - - - - ") for j in range(len(bo[0])): if j % 3 == 0 and j != 0: print(" | ", end="") if j == 8: print(bo[i][j]) else: print(str(bo[i][j]) + " ", end="") def find_empty(bo): for i in range(len(bo)): for j in range(len(bo[0])): if bo[i][j] == 0: return (i, j) # row, col return None print_board(board) solve(board) print("___________________") print_board(board)
Building the GUI
GUI Code
For this GUI to work it must be inside the same directory as the file called solver.py. You must also have pygame installed on your system. To learn how to download/install pygame watch this video.
Download Code: Download Now
GUI.py
# GUI.py import pygame from solver import solve, valid import time pygame.font.init() class Grid: board = [ [7, 8, 0, 4, 0, 0, 1, 2, 0], [6, 0, 0, 0, 7, 5, 0, 0, 9], [0, 0, 0, 6, 0, 1, 0, 7, 8], [0, 0, 7, 0, 4, 0, 2, 6, 0], [0, 0, 1, 0, 5, 0, 9, 3, 0], [9, 0, 4, 0, 6, 0, 0, 0, 5], [0, 7, 0, 3, 0, 0, 0, 1, 2], [1, 2, 0, 0, 0, 7, 4, 0, 0], [0, 4, 9, 2, 0, 6, 0, 0, 7] ] def __init__(self, rows, cols, width, height): self.rows = rows self.cols = cols self.cubes = [[Cube(self.board[i][j], i, j, width, height) for j in range(cols)] for i in range(rows)] self.width = width self.height = height self.model = None self.selected = None def update_model(self): self.model = [[self.cubes[i][j].value for j in range(self.cols)] for i in range(self.rows)] def place(self, val): row, col = self.selected if self.cubes[row][col].value == 0: self.cubes[row][col].set(val) self.update_model() if valid(self.model, val, (row,col)) and solve(self.model): return True else: self.cubes[row][col].set(0) self.cubes[row][col].set_temp(0) self.update_model() return False def sketch(self, val): row, col = self.selected self.cubes[row][col].set_temp(val) def draw(self, win): # Draw Grid Lines gap = self.width / 9 for i in range(self.rows+1): if i % 3 == 0 and i != 0: thick = 4 else: thick = 1 pygame.draw.line(win, (0,0,0), (0, i*gap), (self.width, i*gap), thick) pygame.draw.line(win, (0, 0, 0), (i * gap, 0), (i * gap, self.height), thick) # Draw Cubes for i in range(self.rows): for j in range(self.cols): self.cubes[i][j].draw(win) def select(self, row, col): # Reset all other for i in range(self.rows): for j in range(self.cols): self.cubes[i][j].selected = False self.cubes[row][col].selected = True self.selected = (row, col) def clear(self): row, col = self.selected if self.cubes[row][col].value == 0: self.cubes[row][col].set_temp(0) def click(self, pos): """ :param: pos :return: (row, col) """ if pos[0] < self.width and pos[1] < self.height: gap = self.width / 9 x = pos[0] // gap y = pos[1] // gap return (int(y),int(x)) else: return None def is_finished(self): for i in range(self.rows): for j in range(self.cols): if self.cubes[i][j].value == 0: return False return True class Cube: rows = 9 cols = 9 def __init__(self, value, row, col, width ,height): self.value = value self.temp = 0 self.row = row self.col = col self.width = width self.height = height self.selected = False def draw(self, win): fnt = pygame.font.SysFont("comicsans", 40) gap = self.width / 9 x = self.col * gap y = self.row * gap if self.temp != 0 and self.value == 0: text = fnt.render(str(self.temp), 1, (128,128,128)) win.blit(text, (x+5, y+5)) elif not(self.value == 0): text = fnt.render(str(self.value), 1, (0, 0, 0)) win.blit(text, (x + (gap/2 - text.get_width()/2), y + (gap/2 - text.get_height()/2))) if self.selected: pygame.draw.rect(win, (255,0,0), (x,y, gap ,gap), 3) def set(self, val): self.value = val def set_temp(self, val): self.temp = val def redraw_window(win, board, time, strikes): win.fill((255,255,255)) # Draw time fnt = pygame.font.SysFont("comicsans", 40) text = fnt.render("Time: " + format_time(time), 1, (0,0,0)) win.blit(text, (540 - 160, 560)) # Draw Strikes text = fnt.render("X " * strikes, 1, (255, 0, 0)) win.blit(text, (20, 560)) # Draw grid and board board.draw(win) def format_time(secs): sec = secs%60 minute = secs//60 hour = minute//60 mat = " " + str(minute) + ":" + str(sec) return mat def main(): win = pygame.display.set_mode((540,600)) pygame.display.set_caption("Sudoku") board = Grid(9, 9, 540, 540) key = None run = True start = time.time() strikes = 0 while run: play_time = round(time.time() - start) for event in pygame.event.get(): if event.type == pygame.QUIT: run = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_1: key = 1 if event.key == pygame.K_2: key = 2 if event.key == pygame.K_3: key = 3 if event.key == pygame.K_4: key = 4 if event.key == pygame.K_5: key = 5 if event.key == pygame.K_6: key = 6 if event.key == pygame.K_7: key = 7 if event.key == pygame.K_8: key = 8 if event.key == pygame.K_9: key = 9 if event.key == pygame.K_DELETE: board.clear() key = None if event.key == pygame.K_RETURN: i, j = board.selected if board.cubes[i][j].temp != 0: if board.place(board.cubes[i][j].temp): print("Success") else: print("Wrong") strikes += 1 key = None if board.is_finished(): print("Game over") run = False if event.type == pygame.MOUSEBUTTONDOWN: pos = pygame.mouse.get_pos() clicked = board.click(pos) if clicked: board.select(clicked[0], clicked[1]) key = None if board.selected and key != None: board.sketch(key) redraw_window(win, board, play_time, strikes) pygame.display.update() main() pygame.quit()
solver.py
# solver.py def solve(bo): find = find_empty(bo) if not find: return True else: row, col = find for i in range(1,10): if valid(bo, i, (row, col)): bo[row][col] = i if solve(bo): return True bo[row][col] = 0 return False def valid(bo, num, pos): # Check row for i in range(len(bo[0])): if bo[pos[0]][i] == num and pos[1] != i: return False # Check column for i in range(len(bo)): if bo[i][pos[1]] == num and pos[0] != i: return False # Check box box_x = pos[1] // 3 box_y = pos[0] // 3 for i in range(box_y*3, box_y*3 + 3): for j in range(box_x * 3, box_x*3 + 3): if bo[i][j] == num and (i,j) != pos: return False return True def print_board(bo): for i in range(len(bo)): if i % 3 == 0 and i != 0: print("- - - - - - - - - - - - - ") for j in range(len(bo[0])): if j % 3 == 0 and j != 0: print(" | ", end="") if j == 8: print(bo[i][j]) else: print(str(bo[i][j]) + " ", end="") def find_empty(bo): for i in range(len(bo)): for j in range(len(bo[0])): if bo[i][j] == 0: return (i, j) # row, col return None